
International Journal of Multiphase Flow 35 (2009) 118–128
Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier .com/locate / i jmulflow
Filtered particle tracking in isotropic turbulence and stochastic modeling
of subgrid-scale dispersion

Jacek Pozorski a, Sourabh V. Apte b,*

a Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
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a b s t r a c t

A numerical study based on the Eulerian–Lagrangian formulation is performed for dispersed phase
motion in a turbulent flow. The effect of spatial filtering, commonly employed in large-eddy simulations,
and the role of the subgrid scale turbulence on the statistics of heavy particles, including preferential con-
centration, are studied through a priori analysis of DNS of particle-laden forced isotropic turbulence. In
simulations where the subgrid scale kinetic energy attains 30–35% of the total we observe the impact
of residual fluid motions on particles of a smaller inertia. It is shown that neglecting the influence of sub-
grid scale fluctuations has a significant effect on the preferential concentration of those particles. A sto-
chastic Langevin model is proposed to reconstruct the residual (or subgrid scale) fluid velocity along
particle trajectories. The computation results for a selection of particle inertia parameters are performed
to appraise the model through comparisons of particle turbulent kinetic energy and the statistics of pref-
erential concentrations.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical studies of two-phase flows with dispersed droplets
or solid particles constitute an important activity in turbulence re-
search. Both in the two-fluid and the trajectory approach (e.g.,
Simonin, 1996; Minier and Peirano, 2001) there remain a variety
of open theoretical and modeling issues. Practical applications of
two-phase polydispersed flows include environmental studies,
chemical and process engineering, as well as power engineering,
including wet steam flows and combustion of solid or liquid fossil
fuels. A relevant industrial example is fuel injection in Diesel en-
gine or a gas turbine combustor where the dispersed phase is pres-
ent in the form of small droplets (Apte et al., 2003a, 2003b; Moin
and Apte, 2006).

Historically, the trajectory approach with random walk ideas
dates back to the landmark paper of Taylor (1921). Since then,
the Lagrangian stochastic approach has been developed in its nat-
ural context for modeling and prediction of turbulent diffusion and
dispersion. In the framework of statistical RANS (Reynolds-aver-
aged Navier–Stokes) description of turbulence, various random
walk models for the diffusion of fluid particles (Thomson, 1986;
Sawford, 2001) and the dispersion of solid particles in two-phase
flows have been proposed, cf. Stock (1996), Pozorski and Minier
(1998) and references therein. Moreover, a general probability
density function (PDF) formalism has been developed (Reeks,
ll rights reserved.

: +1 541 737 25000.
1992; Pozorski and Minier, 1999; Minier and Peirano, 2001; Mash-
ayek and Pandya, 2003; Peirano et al., 2006). A review and some
discussion of these issues is given in Section 2.2.

Nowadays, following a rapid progress in large eddy simulation
(LES) of turbulence, the LES method has been used with success
to compute two-phase dispersed flows. In single-phase LES, the
residual or subgrid-scale (SGS) flow scales remain unresolved by
definition and their impact on the resolved motion is usually ac-
counted for through an appropriate SGS stress model. In dispersed
two-phase flows, the feasibility of LES to study the preferential
concentration of particles by turbulence (Wang and Squires,
1996) and to compute flows with two-way momentum coupling
(Boivin et al., 2000) has been reported. In the Lagrangian–Eulerian
studies of dispersed flows (i.e., LES of the continuous phase cou-
pled with particle tracking) it has been a common practice to ne-
glect the SGS flow scales. It has been argued that the long-time
particle dispersion is governed by the resolved, larger-scale fluid
eddies (Armenio et al., 1999). Only recently, the influence of the
SGS flow turbulence on the statistics of particle motion and their
preferential concentration has received some attention in the
literature.

Generally speaking, the main difficulty in extending LES to
physically-complex flows, such as dispersed two-phase flows,
comes from the fact that some terms in the filtered LES evolution
equations have to be modeled altogether, because relevant physi-
cal processes occur at unresolved scales. An example are the source
terms, due to chemical reactions, in mass and energy balance equa-
tions. Some other are partly resolved convective terms and source
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terms due to the presence of particles: mass transport (evapora-
tion/condensation), momentum coupling, and energy balance
(heating, latent heat of evaporation). It remains an open question
to determine in what cases the SGS part of these terms should be
accounted for when considering the behavior of the dispersed
phase. In addition, new models for the subgrid scale effects on
the particle motion are necessary to correctly predict particle dis-
persion in LES.

In the following, we first recall the issue of particle dispersion in
the context of RANS and LES turbulence modeling (Section 2). The
main emphasis of the paper is to revisit the role of the unresolved
fluid turbulence in LES of particle-laden flows (also called SGS par-
ticle dispersion). This is done with the help of a priori LES tests
using filtered DNS velocity fields, both without and with a model
to account for the SGS turbulence ‘‘seen” by particles. This ap-
proach is referred to as the filtered particle tracking (FPT). The first
aim is to study the impact of LES filtering on the particulate phase
(Section 3). The effect will be shown to be non-negligible for a suf-
ficiently coarse LES mesh (judged by a residual kinetic energy con-
tent). A quantitative assessment of this effect is accomplished
through particle velocity statistics and the statistics of preferential
particle concentration: the probability distribution of particle
number density and the radial distribution function of the inter-
particle distance. The second aim of the paper is to develop a mod-
el for the SGS particle dispersion (Section 4). The model is meant to
reconstruct statistically the residual flow field along particle trajec-
tories. Computation results are reported (Section 5) for the forced
isotropic turbulence case: turbulent kinetic energy of particles,
particle velocity autocorrelation time scale, and measures of pref-
erential concentration.
2. Turbulent dispersion of particles

2.1. Problem statement

In this paper, the dispersed phase will be assumed dilute; con-
sequently, the one-way momentum coupling is adequate and par-
ticle collisions can safely be neglected. Yet, for a sufficiently high
load of the dispersed phase, the two-way coupling needs to be ac-
counted for in the momentum and energy equations; moreover, for
high particle number densities, the interparticle collisions will af-
fect their dynamics. Additional complexity to the physical picture
would be added through the interphase mass and energy transfer
in the case of evaporating droplets or volatilizing solid particles.
Here, we concentrate on the dynamical aspects only, and precisely
on the impact of turbulence on the statistics of the dispersed
phase.

To determine the evolution of a set of non-interacting solid par-
ticles in turbulent flow, particle location xp and its velocity Up

should be known. Another variable of importance for further con-
siderations is the fluid velocity U� ‘‘seen” or sampled by the particle
as it moves across the flow. In terms of the instantaneous Eulerian
velocity field Uðx; tÞ of the carrier (fluid) phase, we have
U� ¼ Uðxp; tÞ. Respective governing equations for particles are:

dxp

dt
¼ Up; ð2:1Þ

dUp

dt
¼ 3

4
qf

qp

CD

dp
jU� � UpjðU� � UpÞ: ð2:2Þ

In general cases (Maxey and Riley, 1983), the particle equation
of motion (2.2) also includes the pressure-gradient, drag, added-
mass and Basset forces. Yet, for particles much heavier than the
carrier fluid, qp � qf (qf and qp stand for fluid and particle densi-
ties, respectively), an acceptable approximation is often to retain
only the aerodynamic drag and external force terms (if relevant).
The drag coefficient, CD ¼ CDðRpÞ, is a function of the particle Rey-
nolds number, Rp ¼ dpjU� � Upj=mf (based on the particle diameter
dp, the relative particle velocity, and the kinematic viscosity of the
carrier fluid, mf ). For the case of Rp 6 1000, the drag coefficient
is approximated by a well-known correlation CD ¼ ð24=RpÞð1þ
0:15R0:687

p Þ. In the limit of small Rp, the drag term takes the form
ðU� � UpÞ=sp, written using the particle relaxation time sp ¼
ðqp=qf Þd

2
p=18mf .

Obviously, modeling of the fluid velocities sampled by particles
is no longer needed when the carrier phase is fully resolved, possi-
bly with source terms that represent the exchange of mass,
momentum, and energy between the particles and the flow. This
is the DNS with point-particle tracking, Eqs. (2.1,2.2), where U� is
simply the instantaneous fluid velocity interpolated at the particle
location. Since the number of degrees of freedom in turbulent
flows scales as R9=4 with the Reynolds number R, this approach is
feasible only for simple flow cases at relatively small R. Neverthe-
less, the DNS studies are extremely valuable for model testing, as
evidenced in the following sections: preferential concentration
patterns, first observed in experimental studies, are investigated
(Section 3.3) and the impact of filtering on particle statistics is as-
sessed (Section 3.4). For finite-size particles (of diameters compa-
rable to the Kolmogorov scale gK or larger), their dynamics,
fluctuating lift and drag forces can be computed from ‘‘true DNS”
studies (Bagchi and Balachandar, 2003; Burton and Eaton, 2003).

2.2. Turbulent dispersion in RANS

Despite the growing importance of DNS, a reduced (or con-
tracted) description involving far less degrees of freedom is still
used for practical, ‘‘real-life” flow cases. In particular, RANS re-
mains a standard engineering approach. One of the difficult model-
ing aspects of turbulent dispersion in RANS is accounting for the
fluid velocity statistics seen along the solid particle trajectories.
They unavoidably differ from the ‘‘pure” Lagrangian statistics be-
cause of the particle inertia (related to the relaxation time sp of
particle momentum) and the effect of external forces (such as grav-
ity). Stochastic models based on the Langevin equation have been
proposed to account for these effects (Pozorski and Minier, 1998;
Minier et al., 2004). Alternatively, the PDF formalism, initially
developed in turbulence modeling (cf. Pope, 2000), and particularly
useful in turbulent combustion (Fox, 2003), has been extended to
turbulent dispersion issues, starting with the kinetic equation of
Reeks (1992) and further developed by Pozorski and Minier
(1999). The system of flow variables consists of xp, Up, and U�. In
the Lagrangian notation, particles are identified by their location
x0

p at a tagging time t0, that is xpðt0; x0
pÞ ¼ x0

p; so are the velocities
‘‘seen” by particles: U�ðt; x0

pÞ ¼ Uðxpðt; x0
pÞ; tÞ. Particle location and

velocity are governed by Eqs. (2.1) and (2.2), whereas U� evolves
according to dU�=dt ¼ A where the acceleration A of the fluid
‘‘seen” should be modeled. This can be done by the stochastic dif-
fusion processes (the Langevin equation) with a proper account for
gravity g and particle inertia. The kinetic equation of Reeks (1992)
governs the transport of the joint PDF of xp and Up in a general
case of nonhomogeneous turbulence. Actually, it is not the
Fokker–Planck equation, since it is not local in time (history term
is present); moreover, the diffusion matrix of the underlying
stochastic process is not positive-definite (Minier and Pozorski,
1997). An alternative derivation of the kinetic equation has been
proposed (Pozorski, 1998) based on the cumulant expansion
technique. It has also been shown (Pozorski and Minier, 1999) that
the modeled joint PDF of xp;Up and U� is governed by the
Fokker–Planck equation.

In general terms, a physically-sound reconstruction of instanta-
neous fluid velocity ‘‘seen” by the particles U� has to be performed
out of limited information available (such as the fluid mean
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velocity hUi and the turbulent energy). A classical approach goes
through the decomposition U� ¼ hUi þ u� with the mean fluid
velocity at the particle location, hUiðxp; tÞ, determined from the
Eulerian RANS solver for the carrier phase. (We recall that the sim-
plistic assumption U� ¼ hUi is fundamentally wrong since it will
predict no turbulent dispersion.) Various stochastic models have
been proposed to represent the fluctuating fluid velocity u� sam-
pled by particles. They often are extensions of fluid diffusion mod-
els, developed in environmental and atmospheric studies, but can
suffer from spurious drifts if improperly devised (MacInnes and
Bracco, 1992). A sound alternative is provided by a stochastic mod-
el for U� (Minier and Peirano, 2001, Section 7.5.2).

In the context of RANS, there are no instantaneous flow struc-
tures resolved; consequently, there is no preferential concentration
which, by definition, denotes correlation of particle locations with
certain flow structures (Eaton and Fessler, 1994). In RANS of non-
homogeneous turbulence, spatial gradients of particle number
density can develop (even for initially uniform particle distribu-
tion) because of the so-called turbophoresis effect. It consists in
the net particle displacement in the direction of decreasing turbu-
lence intensity (for qp > qf ). Still remaining on the grounds of sta-
tistical description, we note that a model for U� is needed only in
one-point closures. For a two-point, two-time PDF description,
the fluid velocity U2 at the particle location x2 at t2, given the par-
ticle location x1 at t1, is determined from the velocity U1 and the
conditional probability f ðU2; x2; t2jU1; x1; t1Þ, cf. Zaichik and Alip-
chenkov (2003).

2.3. Turbulent dispersion in LES

In LES, the resolved (large-scale) part of the instantaneous flow
field, eU say, can readily be interpolated to particle locations. The
major issue is now to determine whether the remaining (residual
or subgrid-scale) part of the flow velocity field can have a notice-
able influence on the particulate phase. In most studies reported
so far, this influence has been neglected and justified by a low
residual energy content. A LES of particle-laden channel flow was
performed by Wang and Squires (1996). Analysis of their data
(Fig. 4 there) shows that the ratio of the SGS kinetic energy ksg toeU2 remains small throughout the viscous sublayer (roughly 10%).
Also, Armenio et al. (1999) computed channel flow with the one-
way momentum coupling. Particles were tracked in a fully-re-
solved (DNS) velocity field and in filtered fields with up to 20% of
the turbulent kinetic energy unresolved depending on the filter
size; however, there was no filtering in the wall-normal direction.
They performed then a corresponding LES with the same filter
width Df . In all cases, the rms particle dispersion was found to be
only slightly affected by the incomplete resolution. Indeed, the
time scale of particle velocity autocorrelation increases with
increasing filter size, the particle turbulent kinetic energy de-
creases, and the long-term SGS dispersion is the product of the
two quantities (cf. Shotorban and Mashayek, 2005). However, the
relative dispersion (cloud dispersion) will be affected by filtering.

Okong’o and Bellan (2004) performed an a priori analysis of a
dispersed two-phase flow in mixing layers. They distinguished four
possibilities for the reconstruction of the fluid velocities ‘‘seen”: an
ideal model (velocity Ui from DNS data), baseline model (velocityeUi from LES), random model (velocity reconstructed as eUi þ rni

where ni are Gaussian random numbers) and deterministic model
(including the local Laplacian of the resolved field, cf. also Kuerten
and Vreman (2005) for de-filtering in non-homogeneous direc-
tions). Oefelein (cf. Segura et al., 2004) extended the eddy life-time
and interaction-time model known in RANS and successfully ap-
plied it to the LES of channel flow. Also Sankaran and Menon
(2002) proposed a simple SGS dispersion model, yet its impact
on final LES results has not been reported. Moreover, it is not quite
clear whether the successive residual velocities were generated
there as independent random values at every flow time step or
at time intervals prescribed otherwise.

Recently, Kuerten and Vreman (2005), Shotorban and Mashayek
(2005), and Kuerten (2006) studied the application of approximate
deconvolution model (ADM) for particle-laden flows. The ADM is
theoretically supported as the inverse of LES filtering. It is deter-
ministic and results in a kind of structural SGS model, since it aims
to reconstruct (or mimic) the whole SGS flow field. In practice, ADM
is able to retrieve only the largest unresolved scales (of the order of
the cut-off length) by multiple implicit filtering. For a coarse-scale
LES, one cannot (by definition) reconstruct all SGS flow, cf. also dis-
cussion by Okong’o and Bellan (2000). So, for a slightly-filtered DNS
(Df ¼ 2gK , say), ADM is expected to work (Kuerten and Vreman,
2005). Otherwise, ADM is helpful in cases where particles are most
responsive to scales just below the cut-off (Kuerten, 2006). Shotor-
ban and Mashayek (2006) also proposed a stochastic model for SGS
particles dispersion and applied it to decaying isotropic turbulence.
There, additional complexity resulted from the growth of gK in time
since relatively less and less energy was filtered out. In the present
authors’ opinion, the problem with that stochastic model was that
no crossing-trajectory effect was accounted for. Hence, the integral
time scale of the fluid ‘‘seen” by larger-inertia particles, and conse-
quently, also the rms particle dispersion were over-estimated. On
the contrary, the results for smaller-inertia particles were in good
agreement with the DNS reference data.

An often overlooked conceptual difficulty related to LES with
stochastic SGS dispersion modeling, as opposed to particle disper-
sion in RANS, comes from the fact that the latter is formulated in
terms of statistical averages, whereas the nature of the former is
more complex. Indeed, random-walk (or stochastic particle) mod-
els in the context of RANS are meaningful in terms of the statistics
over particles (e.g., time-averaged for steady flows), such as their
kinetic energy, dispersion coefficient, etc. On the other hand, the
large-eddy flow field (obtained with local spatial averaging) can
be thought of as a perfectly deterministic, instantaneous solution.
The marginally-resolved flow scales can be partly retrieved
through deterministic structural-type models (such as ADM, cf.
Kuerten, 2006) what makes a consistent approach. Otherwise,
the subfilter-scale motions remain statistical in nature and it is
reasonable to conceive stochastic models for them. However,
although these are single-realisation approaches in practical
implementation, a question remains whether instantaneous parti-
cle variables are already physically meaningful, or again (as in
RANS) should they be somehow averaged first. This is actually
done here by the computation of the particle turbulent energy or
by taking two-point correlations to analyse spatial segregation pat-
terns. Basically, the problem refers to any stochastic model applied
with LES (be it for dispersed flow, combustion, etc.) since, by defi-
nition, stochastic modeling uses the underlying concept of the PDF
(or FDF) and only the ensemble-averaged quantities are of interest.
In a strongly unsteady and/or inhomogeneous turbulence the use
of just single realisations to predict the system behavior may not
be appropriate.
3. Preferential concentration of particles in turbulent flows

3.1. Effect of turbulent structures on particles

Instantaneous structures of the turbulent velocity field influ-
ence the motion of heavy particles (droplets), depending on their
inertia. A convenient definition of the particle Stokes number in
isotropic turbulence goes through the normalization with the Kol-
mogorov time scale: St ¼ sp=sK . Particles of St ¼ Oð1Þ tend to cor-
relate with certain eddy structures and this leads to the effect of
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preferential concentration, i.e., accumulation of particles in flow
regions of low vorticity and high rate of strain (streams, conver-
gence zones); cf. Eaton and Fessler (1994) for review. Studies re-
ported in the literature include DNS of isotropic turbulence
(Squires and Eaton, 1991; Wang and Maxey, 1993) as well as LES
(Wang and Squires, 1996).

The preferential concentration changes the physical picture of
particulate flows in a number of ways: it affects the particle depo-
sition on walls (Uijttewaal and Oliemans, 1996); it leads to an in-
crease of interparticle collision rates and, possibly, coalescence in
a dense two-phase flow regime (Reade and Collins, 2000); it influ-
ences the particle settling velocity in an external (gravity) field
(Wang and Maxey, 1993). For particles that move in the external
force field, their final settling velocity in turbulent fluid can be con-
siderably larger than that observed in a stagnant fluid, depending
on St. This effect has been first noticed in a laminar cellular flow
field (Maxey, 1987) and in random turbulence simulations (Wang
and Maxey, 1993). Arguably, the same physical mechanisms will
lead to the increase of stopping distance of spray injected in turbu-
lent flow due to the interaction of particles and vortical structures,
specially in a final (low velocity) stage of particle motion.

3.2. Quantifying preferential concentration

Various measures of preferential concentration have been
established in the literature, cf. Hogan and Cuzzi (2001) for a com-
parative study and sensitivity tests with respect to the Reynolds
number and bin size. Preferential concentration can be quantified
by the PDF of particle number density based on bin counting, cf.
Fig. 1(a). The distribution of particle number n ¼ NPC per bin (or
per cell), fBðnÞ, will depend on St and on the bin size. For a random
(uncorrelated) distribution of particles in the domain, the PDF is
the discrete Poisson distribution, fPðnÞ, with the parameter k being
the mean of the number density (exactly: the average number of
particles per cell, hNPCi)

fPðnÞ ¼
e�k

n!
kn; k ¼ hNPCi: ð3:1Þ

A natural measure of the non-uniform particle concentration is
the deviation of the actual (measured) number density from the
random one (Wang and Maxey, 1993):

eD ¼X1
n¼1

½fBðnÞ � fPðnÞ�2: ð3:2Þ

Another measure of preferential concentration is (Eaton and Fessler,
1994)

D ¼ s� sP

k
ð3:3Þ

where s is the standard deviation of the actual number of particles
per bin, and sP ¼ k1=2 is the standard deviation of the corresponding
Poisson distribution; normally, D P 0.
Fig. 1. Computing the particle number density and the radial distribution function.
Yet another possibility to quantify the non-uniform particle
concentration comes from the two-point spatial distribution func-
tion. For a statistically isotropic and homogeneous system of parti-
cles, Reade and Collins (2000) introduced the radial distribution
function (RDF) of the interparticle distance, g(r), where r ¼ jx2�
x1j for particles located at points x2 and x1, cf. Fig. 1(b). The RDF
is derived from the two-particle distribution function gð2Þðx1;x2Þ
under the assumption of isotropy. Basically, gðrÞdr is the number
of particles located in a spherical cell ðr; r þ drÞ around x1, divided
by the expected number of particles if their distribution were uni-
form, and averaged over first-particle locations x1. The RDF is close
to unity for a uniformly distributed particle system. Moreover, g(r)
can provide a clear estimation of the characteristic length scale of
preferential concentration (if any).

3.3. DNS of particle-laden, forced isotropic turbulence

The DNS of forced isotropic turbulence at Rk ¼ 40 has been per-
formed on a 963 grid with periodic boundary conditions. A statisti-
cally stationary flow field was generated using a technique
proposed by Lundgren (2003). Accordingly, a linear forcing func-
tion is added as a source term in the momentum equations. Start-
ing from an initially random perturbation, the balance between the
forcing function and viscous dissipation develops a stationary iso-
tropic turbulent flow. The time step of the flow simulation was
Dtþ ¼ 3 � 10�3. The particle tracking has been performed in the
DNS velocity field (with the assumption of one-way momentum
coupling) for a selection of St. In all simulations, we have used
643 ¼ 262 144 particles which is deemed sufficient to keep the sta-
tistical error level reasonably low. The resulting snapshots of par-
ticle locations in a slice of the computational box are shown in
Fig. 2. As readily noticed, the preferential concentration of particles
is most visible for 0:2 < St < 2, in agreement with earlier observa-
tions of Squires and Eaton (1991).

The bin counting has been applied to particle locations in 3D
with the bin size varying from the single cell size of the DNS
ðDbin ¼ Df Þ up to 1/6 of the domain size ðDbin ¼ 16Df ). As evidenced
by the profiles of fB in Fig. 3, the random particle pattern (the Pois-
son distribution) is noticed for the smallest particles tracked
ðSt ¼ 0:01Þ for all bin sizes. Also for the largest particles ðSt ¼ 4Þ
the pattern is basically random, specially for smaller bin sizes.
Intermediate-size particles tend to deviate most from the random
distribution. As noticed from Fig. 3(d), the limit behavior for large
hNPCi (larger bins) is well reproduced, i.e., the Poisson distribution,
Eq. (3.1), tends to the Gaussian PDF, Nðk; k1=2Þ.

For particles in isotropic turbulence, eD computed from Eq. (3.2)
is shown in Fig. 4(a); the profile of D, Eq. (3.3), is shown in Fig. 4(b).
Both confirm the visual impression from Fig. 2 that the maximum
of preferential concentration occurs for particles of St ¼ Oð1Þ.

To better illustrate how the RDF g(r) works in practice, we
started with three simple, predetermined particle patterns in 3D
(Fig. 5): uniform (particles distributed randomly), regularly or-
dered at some scale L (resulting in a checkered pattern), and or-
dered with some randomization. In the latter, particles were
uniformly distributed in alternate boxes whose sizes were pro-
vided by the random numbers taken from the uniform distribution
on intervals (0.5L, 1.5L) in each coordinate direction. As quantified
by the RDF in Fig. 6(a), the uniform random pattern from Fig. 5(a)
does not exhibit any preferential concentration when looked at the
scale of discretised RDF bins, Dr. The same remains true for any
pattern (even perfectly regular) ordered at a short scale l� Dr.
For the regular checkered pattern ðL > DrÞ from Fig. 5(b), the
non-uniformities are clearly reflected in the RDF. It deviates from
1 to larger values when the preferential concentration occurs at a
given separation. On the other hand, by definition of the RDF, it
can drop to values smaller than 1 when at a given separation there
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Fig. 2. Snapshots of particle positions from DNS; runs with various values of the particle inertia parameter: (a) St = 0.01, (b) St = 0.2, (c) St = 0.7, (d) St = 1, (e) St = 2, (f) St = 4.
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Fig. 3. PDF of particle number density for different bin sizes: (a) Df , (b) 2Df , (c) 4Df , (d) 16Df .
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are less particle pairs than for a uniform distribution. Moreover,
the characteristic length scale of the pattern (�L) is retrieved from
the plot (solid) in Fig. 6(a). When it comes to less regular particle
arrangements (like the checkered, randomized pattern of Fig. 5c),
the RDF plot becomes flatter. This is specially evident for the
three-dimensional (3D) treatments. On the other hand, the RDF
computed in 2D, when particles are located in a thin slice that rep-
resents a cut of the whole (3D) domain, seems to better visualise
the segregation in ‘‘randomized” cases. For the checkered random-
ized pattern, the difference in the behaviour of the PDF (specially
for larger r) is clearly noticed in Fig. 6(b). Accordingly, we have
done some RDF computations of the heavy particle patterns in tur-
bulent flow also in 2D (out of slices rather than full boxes). The
quite spectacular shape of the RDF for the pre-arranged patterns
of Fig. 5(b and c) resembles that of the macroscopic density com-
puted out of molecules’ masses and locations (which is a well-
known story when one discusses the shift from the atomic-scale
to continuum limit for a liquid, say).

Then, we applied the RDF procedure in 3D to snapshots of par-
ticles moving in the DNS flow field. The plots in Fig. 7(a) show a
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Fig. 5. Various particle arrangements for RDF testing: (a) uniform, (b) regular checkered, (c) randomized checkered.
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departure from the uniform (random) distribution of particle loca-
tions in space, most pronounced for 0.2 < St < 2. The characteristic
length scale of the pattern is about 10gK , again in line with the
findings of Eaton and Fessler (1994). We note that the interpreta-
tion of the RDF plots is fairly subtle since the actual results depend
on the choice of the RDF bin size Dr with respect to the scales (L or
gK ) considered.

3.4. A priori tests of preferential concentration: particle tracking in
filtered DNS field

To the best of the authors’ knowledge, apart from the present
study the effect of LES filtering on preferential particle concentra-
tion has been investigated only in a comprehensive paper by Fede
and Simonin (2006). In the following, we report interesting find-
ings from an a priori test. The instantaneous velocity field com-
puted from DNS is subjected to spatial filtering to obtain the
large-eddy velocity field. The filtering procedure involves a local
volume averaging of the control volume (cv) based velocity field
to the grid vertices and reverse averaging from the grid vertices
to the cv centroids. The instantaneous DNS velocity field has been
filtered so that kfiltered ¼ 0:65kDNS.

Then, the particles have been tracked in a filtered (smoothed)
velocity field. To determine the impact of smoothing on preferen-
tial concentration, the statistics of the particle number density in
the physical space have been gathered. The pattern of preferential
concentration is indeed modified by filtering. As noticed from the
computed RDF of particle locations (Fig. 7b), the impact of the
LES filtering is visible for the smaller-inertia particles ðSt ¼ 0:7Þ,
correlated with the smaller eddy scales, and the resulting RDF in
3D becomes flatter for larger interparticle distance r. In the filtered
velocity field, those particles behave as though their effective
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Stokes number were larger (the RDF for filtered St = 0.7 becomes
close to that corresponding to DNS of St = 2 particles); yet, short-
scale correlations remain strong. On the other hand, the RDF of
St = 2 particles exhibits a steeper profile (up to r � 10gK , say) upon
filtering, indicating the lack of the small-scale fluid eddies that in
the full DNS velocity field induce a stirring action. Therefore, the
shorter-range correlations become stronger in an a priori LES. This
gives us some hint as to the construction of a SGS dispersion mod-
el. The snapshots of particle locations moving in the smoothed
(LES-like) velocity field are shown in Figs. 8(b) and 9(b).

We have also checked the impact of filtering on the particle
kinetic energy kpðStÞ. Results are shown in Table 1. As can be
seen (DNS vs. a priori LES results without the SGS dispersion
model), the turbulent kinetic energy is reduced in a filtered field
(more for the smaller Stokes number studied). Then, we have
considered the Lagrangian particle velocity autocorrelation. As
observed in Fig. 10 (DNS vs. ‘‘no model LES” plots), because of
the removal of smaller fluid eddies that basically induce a decor-
relation of particle velocities (‘‘random stirring”), the velocity cor-
relation lasts longer. Consequently, the particle Lagrangian
autocorrelation time scale Tp increases in a priori LES. As known
from the theory of Tchen, the long-time particle dispersion coef-
ficient is the product of kp and Tp; consequently, the two effects
partly compensate, so filtering is unlikely to have a major impact
on the particle dispersion.

4. Reconstructing residual fluid velocity field along particle
paths

4.1. Reasons behind SGS dispersion modeling

In LES, by definition of the method, a major part of the turbulent
kinetic energy should be resolved (say, 80%, Pope, 2000). Yet, this
a b c

Fig. 8. Snapshots of particle positions; St = 0.7. (a) DNS; (b) a priori LES with with no
can be estimated only in simple cases where there is a DNS study
at hand. For practically-relevant computations, the resolution often
varies in space. The LES is known to face particular difficulties in
wall-bounded flows, since the complete near-wall resolution be-
comes costly as the number of grid nodes scales roughly as R1:8

(cf. Pope, 2000) and wall-modeling (or hybrid RANS/LES approach)
is preferred. Also in this case, the SGS energy content may be
considerable.

Regarding the LES of two-phase dispersed flows, several new is-
sues appear. A concern about LES with the two-way coupling (of
mass, momentum, energy) relates to the modeling of carrier phase
source terms due to particles. Another concern, of importance here,
is the impact of unresolved (subgrid-scale) flow quantities on par-
ticles: their dispersion, preferential concentration, deposition on
walls. The effect can vary depending on the particle inertia param-
eter. In particular, for evaporating spray flow, the droplets become
increasingly smaller and their inertia parameter changes, hence
sooner or later the droplets unavoidably enter the size range where
there is an impact from the flow SGS. In numerical studies of near-
wall turbulence (Uijttewaal and Oliemans, 1996; Pozorski and
Luniewski, 2008). The LES predicted the particle deposition coeffi-
cient to be significantly smaller than the value found in experiment
and DNS. One of the reasons was the insufficient resolution of
near-wall eddies responsible for deposition of smaller particles,
and a need of a model to account for subgrid scale effects on par-
ticles was suggested.

4.2. Requirements for a SGS particle dispersion model

To specify criteria of a good SGS dispersion model, let us start
from the well-established case of single-phase LES. Arguably, a
sound model for the SGS stress should simulate the effects of small
eddies without altering the motion at large-eddy scales. For
d

SGS dispersion model; (c) a priori LES with model and C = 0; (d) with C = 0.05.
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Fig. 9. Snapshots of particle positions; St = 2. (a) DNS; (b) a priori LES with no SGS dispersion model; (c) a priori LES with model and C = 0.05; (d) with C = 1.

Table 1
Turbulent kinetic energy of particles normalised with the fluid energy (‘‘model”: a
priori LES with the SGS dispersion model).

DNS a priori LES Model, C = 0.1 Model, C = 1

St = 0.7 0.83 0.54 0.60 0.77
St = 2 0.60 0.42 0.46 0.62
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particle-laden turbulent flows, but still with the one-way coupling
of mass, momentum, and energy (i.e., no evaporation/condensa-
tion, light loading, no heat transfer), a pre-requisite for a good
SGS dispersion model, suitable for FPT, is that particle characteris-
tics should remain close to those from a fully-resolved computa-
tion. They include the statistics of instantaneous particle
locations (preferential concentration, if any), averaged locations
(e.g., the rms particle position in line-source dispersion, the con-
centration profile in jet or mixing layer), and velocities (turbulent
kinetic energy, Lagrangian velocity autocorrelation).

The constraints to be satisfied by a SGS dispersion model are: (i)
in the limit of fully-resolved computation (LES then becomes DNS,
ksg ! 0), the model should have no effect on particle motion; (ii) in
the limit of small particles (sp=sf ! 0 where sf is a characteristic
fluid time scale) the model should boil down to the prediction of
fluid diffusion; the velocity filtered density function (FDF) approach
of Gicquel et al. (2002) may possibly serve as the limit case to com-
pare with; (iii) in the limit of large particles ðsp=sf !1Þ the model
should have no short-time effect on particle motion; (iv) in the
presence of external force field (gravity), the model should possibly
take it into account; (v) in the limit of under-resolved velocity field
(LES then becomes RANS, ksg ! k), the particle turbulent dispersion
should be fully modeled; (vi) for pairs of neighboring particles (lo-
cated within the same cell or closer to each other than OðDf Þ), the
model should possibly account for relative dispersion effects.

We perceive the constraints (i)–(iii) as really important for SGS
dispersion models in the context of LES. The effects of external
fields (iv) are, apparently, not well known; the limit of RANS (v)
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is unlikely to be approached in real-life LES computations; finally,
the relative dispersion (vi) cannot be accounted for in the one-
point approach that is of interest here because of computational
efficiency.

An essential ingredient of the SGS dispersion model is the resid-
ual kinetic energy ksg. It determines the level of residual velocity
fluctuations, also those ‘‘seen” by particles. In a particular test case
considered here (forced isotropic turbulence), ksg can readily be
found from the DNS data (raw and filtered). In general case, the
subgrid kinetic energy of the flow can be estimated from its trans-
port equation. Wang and Squires (1996) and Sankaran and Menon
(2002) recall the ksg equation based on the Schumann non-equilib-
rium model.

Alternatively, approximate expressions for the subgrid eddy
viscosity mt can be explored and compared. Assuming that the
cut-off wavenumber kc ¼ 1=Df lies in the inertial range, the
spectral analysis (cf. Lesieur, 1997) predicts mt ¼ 0:267

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðkcÞ=kc

p
.

Together with the assumption of the Pao energy spectrum, this
yields mt ¼ 0:067Df

ffiffiffiffiffiffi
ksg

p
where the proportionality constant has

been given by Sankaran and Menon (2002); hence ksg ¼
ðmt=0:067Df Þ2. Now, the eddy viscosity can be substituted from
the SGS model used in actual LES computation.

4.3. SGS dispersion model for locally homogeneous and isotropic
turbulence

A reasonable assumption about LES is to consider the residual
turbulent motion as locally homogeneous and isotropic. Then,
the fluid velocity ‘‘seen” by particles is computed as U�i ¼ eUi

ðxp; tÞ þ u�i , i.e., the sum of the filtered LES velocity eUi interpolated
at the particle location and the residual velocity ‘‘seen” by the par-
ticle. The assumption of the residual field being uncorrelated with
the resolved one is implied here. It is quite strong for the LES (yet
correct in the RANS context) and can be partly justified by the fact
that the model for u�i , proposed below, is meant to reconstruct
some statistical quantities only (the energy and the time scale of
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the SGS fluid ‘‘seen”). An attempt to use the correlation of unre-
solved scales (just below the filter level) with the resolved ones
(just above that level) is made in the approximate deconvolution
models.

Crucial ingredients of a model to be put forward below refer to
the residual fluid motion ‘‘seen” by the particle. They are the sub-
grid velocity scale of the fluid ‘‘seen”, r�sg, and a subgrid time scale
of the fluid ‘‘seen”, s�L . We assume in the following that the velocity
scale of the fluid ‘‘seen” is equal to the characteristic SGS fluid
velocity, r�sg ¼ rsg, where:

rsg ¼
ffiffiffiffiffiffiffiffiffiffi
2
3

ksg

r
; ð4:1Þ

yet, some error can occur due to preferential particle concentration.
The timescale s�L is generally a function of the SGS fluid time scale
ssg, the time scale related to external fields, and possibly also of
the particle relaxation time: s�L ¼ f ðssg;rsg=g; spÞ.

Langevin stochastic equation has been used in turbulent diffu-
sion models on the one hand, and adopted in the Lagrangian PDF
approach to turbulent flows in seminal developments by Pope
and coworkers (cf. Pope, 2000) on the other hand. From these
two areas of application, the Langevin-type equations migrated
to the modeling of two-phase dispersed flows. By analogy to mod-
eling particle dispersion in isotropic turbulence in the context of
statistical (RANS) description (Pozorski and Minier, 1999), we as-
sume that the SGS velocity ‘‘seen” u� is governed by the Langevin
equation

du�i ¼ �
u�i
s�L

dt þ

ffiffiffiffiffiffiffiffiffiffi
2r2

sg

s�L

s
dWi ð4:2Þ

where dWi is an increment of the Wiener process (Gardiner, 1990).
We note that in LES (and in non-homogeneous RANS) the equation
for the SGS (or turbulent) fluid velocity contains two more RHS
terms: the gradient of the SGS (or turbulent) stress, ðosij=oxjÞdt,
and the filtered (or mean) velocity gradient term, �u�j ðoeUi=oxjÞdt;
cf. Pope (2000) and Peirano (2001, Section 6.7.2) for RANS and Fede
et al. (2006) for LES. Such a Langevin-type equation (with the two
‘‘turbophoretic” terms present) for residual fluid motion should al-
ways be used in more complex turbulent flows simulated with LES
(spurious drifts will appear otherwise). We argue that in isotropic
turbulence, there is no significant ‘‘turbophoretic” effect due to fil-
tered velocity gradients (which are smooth) inducing any mean
drift, and the gradients of the SGS stress tensor are correlated over
a short length scale ð� Df Þ only. This provides us with a partial jus-
tification of the neglect of these terms in a homogeneous isotropic
turbulence considered in the paper.

In Eq. (4.2), the time scales of residual motions ‘‘seen” by the
particle are related to ssg (the time scale of residual fluid motions),
estimated from:

ssg ¼ C
Dfffiffiffiffiffiffiffiffiffi
2
3 ksg

q : ð4:3Þ

The model constant C ¼ Oð1Þ accounts for the uncertainty con-
cerning the time scale of the residual velocity autocorrelation. The
prediction s�L ¼ ssg is expected to work well for small St (also in the
limit case of fluid diffusion). For larger St, we tentatively propose
an extension of the model for RANS particle dispersion (Pozorski
and Minier, 1999) drawing on the Csanady expressions to account
for the crossing-trajectory effect. The time scale will now differ in
the directions parallel and perpendicular to the relative velocityeU � Up

s�L;k ¼
ssgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2n2
q ; s�L;? ¼

ssgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b2n2

q ð4:4Þ
where n is the normalized drift velocity determined from
n ¼ jeU � Upj=rsg.

Note that the relative velocity in RANS is computed from the
mean values as jhUi � hUpij; yet, in LES the filtered particle velocity
is not available (by definition, spatial smoothing can only be applied
to field variables). Therefore, we decided to keep Up in the expres-
sion. In the context of RANS, b in Eq. (4.4) represents the ratio of
Lagrangian to Eulerian time scales b ¼ TL=TE; here, we assume
b ¼ 1 for SGS velocity field. Also note that, unlike stochastic models
proposed by Shotorban and Mashayek (2006), Fede et al. (2006), the
statistics of the SGS fluid ‘‘seen” used to close the Langevin equation
are different from those of the SGS fluid motion. To sum up: the
present choice of s�L means that the SGS fluid velocity ‘‘seen” is auto-
correlated over the time scale of the residual motion, being of the
order of Df =usg for the smallest particles (that behave like fluid ones)
or correspondingly shorter for particles of larger inertia, taking into
account the crossing-trajectory effect, Eq. (4.4).

In practical implementation, a discrete version of the model
(unconditionally stable, first-order accuracy in time) becomes

u�ðnþ1Þ
i ¼ au�ðnÞi þ bni ð4:5Þ

where Dt ¼ tðnþ1Þ � tðnÞ is the time interval and ni are random num-
bers from the standard Gaussian distribution, ni 2Nð0;1Þ. The val-
ues of a and b are given by the explicit solution of the stochastic
differential equation (SDE), Eq. (4.2), with frozen coefficients over
a time step Dt:

a ¼ e�Dt=s�L ; b ¼ rsg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2Dt=s�L

p
: ð4:6Þ

In the particular example of Eq. (4.2), which is a SDE with con-
stant coefficients, the solution provided by Eqs. (4.5) and (4.6) is
exact. Higher-order numerical schemes for this class of SDEs have
recently been proposed (Peirano et al., 2006). However, the con-
struction of higher-order schemes for general (variable coeffi-
cients) SDEs (Kloeden and Platen, 1992) remains an open issue.

Eq. (4.5) can be further simplified to the Euler scheme

u�ðnþ1Þ
i ¼ 1� Dt

s�L

� �
u�ðnÞi þ rsg

ffiffiffiffiffiffiffiffi
2Dt
s�L

s
ni: ð4:7Þ

Yet, in contrast to formulation (4.5,4.6), discretization (4.7) does
impose a time step restriction Dt < s�L because of stability
concerns.

It may be interesting to note that in the limit of Dt � s�L the
scheme (4.5) boils down to generating a series of independent suc-
cessive velocities u�, i.e.

u�ðnþ1Þ ¼ rsgn: ð4:8Þ

However, for a physically-consistent use of Eq. (4.8), it is imper-
ative that the time intervals for generating a series of independent
velocity realizations be 2s�L in order to preserve the correlation
time scale (cf. Pozorski and Minier, 1998). These time intervals
should not be related to the time step of fluid simulations,
although this aspect is sometimes overlooked in papers applying
random-walk type models for SGS particle dispersion in LES. [NB:
In our case, this behavior is implied by the choice of the model con-
stant C = 0 in a discrete setting, cf. Eqs. (4.3) and (4.6).]

5. Results of the SGS dispersion model

5.1. Particle velocity statistics

We start here with the particle statistics that are classical mean
quantities (widely-used also in RANS); in the next section, we
will discuss statistics of particle locations, and specially their
segregation in space, which are two-point statistics (more subtle,
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say), specific to LES rather than RANS. We note that the segrega-
tion, although formally quantified through two-point correlations
(the statistics of interparticle distance), results from the (one-
point) correlations of fluid and particle velocities.

We have computed the particle turbulent kinetic energy from
FPT with the SGS dispersion model (4.2) in a priori LES computa-
tions of forced isotropic turbulence for the same conditions as
those described in Section 3.3. Because the maximum of preferen-
tial concentration in DNS is achieved around St = 1, for further
studies we have chosen a slightly smaller (St = 0.7) and slightly lar-
ger value (St = 2) of particle inertia, since we suppose that the im-
pact of filtering and a subsequent effect of the SGS dispersion
model will be qualitatively different for particle inertia located
on the opposite sides of the maximum.

Results are shown in Table 1. As readily noticed, the particle ki-
netic energy increases with increasing model constant C. The DNS
energy level can be restored in the simulations for a suitable choice
of the model constant; for the Stokes numbers studied, C = 1 works
quite well as far as the turbulent energy of particles is concerned.

The particle velocity autocorrelations are plotted in Fig. 10. As
discussed before, the filtering (‘‘no model” LES results) tends to in-
crease the correlation for intermediate time intervals. The effect of
the Langevin-type SGS particle dispersion model, by its very nature,
is to add some random decorrelation, the stronger the larger is the
model constant C. The conclusion here is that the Langevin-type
SGS dispersion model can not be tuned to satisfy the two con-
straints: a correct level of particle kinetic energy on the one hand,
and a correct Lagrangian velocity correlation and the preferential
concentration patterns on the other hand. Recently, an interesting
proposal of separating the particle velocity in turbulent flow into
a continuous field and a random (uncorrelated) part has been put
forward by Février et al. (2005). Arguably, LES filtering affects both,
and the Langevin-type, stochastic diffusion model is suitable as a
remedy to the effect of filtering on the uncorrelated part only.

5.2. Preferential concentration

Next, we have found the statistics of the instantaneous particle
locations resulting from a priori LES. The computational results for
two values of the Stokes number and some choices of the model
constant are shown in Figs. 8 and 9. The impact of the residual
velocity field, reconstructed in FPT, is readily noticed. As expected,
the one-point stochastic model introduced here has a ‘‘randomiz-
ing” effect on particle locations. For particle sizes larger than that
of maximum preferential concentration effect (roughly St = 1 in
our case) the randomizing effect of small scales is lost (the picture
of preferential concentration becomes overly sharp), so the model
is meant to restore it, cf. Fig. 9. In the case of smaller particles that
are most influenced by smaller eddies and correlated on a shorter
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Fig. 11. RDF of particles: (a) St = 0.7; (b) St = 2. Results for DNS, a priori LES with no SGS
model constant, Eq. (4.3).
length scale, it is shown in Fig. 8 that the filtering does an inverse
effect, i.e., it partly kills this short-scale preferential concentration
(the picture of preferential concentration becomes somewhat
‘‘blurred”), so a potentially successful model for this case should
rather be of an ‘‘antidiffusive” character (arguably, scale-similarity
arguments can be used for its construction). As found from the
instantaneous particle snapshots (Figs. 8 and 9), the choice of the
model constant to restore the turbulent energy of particles, C = 1,
is not suitable as far as the preferential concentration patterns
are concerned since already C = 0.1 tends to destroy them.

To confirm the visual evidence of Figs. 8 and 9, we have com-
puted again some measures of preferential concentration (cf. Sec-
tion 3.2). Now, also to enhance the visibility of changes due to
filtering and subsequent modeling, the RDF is computed with par-
ticles located in 2D cuts (slices, about 2% thick) of the computa-
tional box. Fig. 11 shows the impact of the SGS dispersion model
on the statistics of preferential concentration, as quantified by
the RDF and compared to Fig. 7(b). The observation for smaller
inertia particles ðSt ¼ 0:7Þ is that even the a priori LES results (no
model) show a slightly flatter RDF (less structure) than the DNS
case. Consequently, application of the stochastic diffusion model
further decreases the preferential concentration. On the other
hand, for larger inertia particles (St = 2) the a priori LES with no
model shows a steeper RDF profile than the DNS, meaning that
the preferential concentration becomes more pronounced for this
combination of particle inertia and the filter size. Conclusion here
is that the SGS model does a better job for St = 2 where some ran-
dom stirring of particles due to the smaller fluid scales (removed
by LES filtering) is restored by the stochastic diffusion model of
the Langevin type, Eq. (4.2). However, the model is not able to re-
trieve the DNS preferential concentration patterns for particles of
St = 0.7 (and smaller).

6. Conclusion and future plans

In this paper, we have investigated the impact of filtered veloc-
ity field, typically used in LES, on particle motion in two-phase tur-
bulent flows. In particular, the changes in particle preferential
concentration patterns have been quantified. Then, a stochastic
model has been proposed to reconstruct the residual velocity field
along heavy particle trajectories, accounting for the crossing-tra-
jectory effect. The model is able to retrieve a correct level of parti-
cle turbulent kinetic energy. For smaller-inertia particles that are
preferentially-concentrated with the flow scales filtered out by
the LES, a diffusion-type SGS dispersion model proposed in the pa-
per is not able to retrieve the small-scale patterns of particle seg-
regation. For larger-inertia particles, small scales filtered out in
LES have a randomizing effect on particle spatial distribution and
this effect is well simulated by our SGS dispersion model. It can
0.0 5.0 10.0 15.0 20.0
r/ηK

0.5

1.0

1.5

2.0

  R
D

F

DNS
LES, no model
LES, C=0.1
LES, C=1

dispersion model, and LES with the model of Eq. (4.2); two different choices of the
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thus be recommended for use in situations involving larger-inertia
particles that are still susceptible to filtering. For smaller-inertia
particles, the model is helpful in restoring correctly the short-time
dispersion and the particle turbulent kinetic energy.

A lingering question as to the present SGS particle dispersion
model is that it is only a single-realization (one-particle) approach.
The statistical interpretation of the model has to be thought over,
including the inhomogeneous turbulence, and also in the context
of parcels (representing many solid particles). Possibly, along more
general ideas of stochastic modeling (beyond the Langevin equa-
tion), an improved model should consist of a random ingredient
(since the details of residual fluid motion are unknown) and possi-
bly also of a deterministic ingredient, dependent on the structure
of the resolved field and justified by the hope that the largest unre-
solved scales are in a sense similar to resolved ones.

The stochastic Langevin model proposed for SGS particle disper-
sion is one-point by construction. Hence, it is able to correctly
reconstruct the particle turbulent kinetic energy and the long-time
dispersion. Otherwise, to exactly account for two-particle quanti-
ties (such as relative dispersion, relative velocity statistics, or SGS
preferential concentration effects), a structural approach, trying
to mimic most important features of the subgrid-scale flow field,
should be conceived.

A further-term objective is to unify the LES/FPT approach for the
dispersed flows, presented above, with the LES/FDF approach for
flows with scalars, possibly reactive, developed by Colucci et al.
(1998). This should ultimately provide a physically-sound, yet effi-
cient, tool for the computation of dispersed turbulent two-phase
flows with chemical reactions (spray combustion).
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